Large energy solutions of the equivariant wave map problem

A. Lawrie joint work with R. Côte, C. Kenig, and W. Schlag, http://www.math.uchicago.edu/~alawrie

Fall 2012

Wave Maps

A brief introduction to wave maps:

 Definition: Formally, wave maps are critical points of the Lagrangian

$$\mathcal{L}(u,\partial u) = \int_{\mathbb{R}^{1+d}} \eta^{lphaeta} \left\langle \partial_{lpha} u, \partial_{eta} u \right
angle_{oldsymbol{g}} dt dx$$

where $u: (\mathbb{R}^{1+d}, \eta) \to (M, g)$. Here, η is the Minkowski metric on \mathbb{R}^{1+d} and (M, g) is a Riemannian manifold.

• Intrinsic Formulation: Critical points of $\mathcal L$ satisfy the Euler-Lagrange equation

$$\eta^{\alpha\beta}D_{\alpha}\partial_{\beta}u=0$$

• Extrinsic Formulation: If $M \hookrightarrow \mathbb{R}^N$ is embedded, critical points are characterized by

$$\Box u \perp T_u M$$

The Cauchy problem

Cauchy problem:

• Intrinsic Formulation: In local coordinates on (M, g), the Cauchy problem for wave maps is

$$\Box u^{k} = -\eta^{\alpha\beta} \Gamma_{ij}^{k}(u) \partial_{\alpha} u^{i} \partial_{\beta} u^{j}$$
$$(u, \partial_{t} u)|_{t=0} = (u_{0}, u_{1})$$

where Γ_{ij}^k are the Christoffel symbols on TM.

• Extrinsic Formulation: In the embedded case, the Cauchy problem becomes

$$\Box u = \eta^{\alpha\beta} S(u)(\partial_{\alpha} u, \partial_{\beta} u)$$
$$(u, \partial_{t} u)|_{t=0} = (u_{0}, u_{1})$$

where S is the second fundamental form of the embedding.

Energy conservation and scaling

Conservation of energy: Wave maps exhibit a conserved energy

$$E(u,\partial_t u)(t) = \int_{\mathbb{R}^d} (|\partial_t u|_g^2 + |\nabla u|_g^2) dx = \text{const.}$$

- Scaling invariance: Wave maps are invariant under the scaling $u(t,x)\mapsto u(\lambda t,\lambda x)$. The conserved energy is invariant under the scaling $u(t,x)\mapsto \lambda^{\frac{d-2}{2}}u(\lambda t,\lambda x)$.
- Criticality: The scaling invariance implies that the Cauchy problem is $\dot{H}^s \times \dot{H}^{s-1}$ critical for $s = \frac{d}{2}$, energy critical when d=2 and energy supercritical for d>2.

Equivariant Wave Maps

Equivariant wave maps: In the presence of symmetries, e.g., $M = \mathbb{S}^d$, one can require

$$u \circ \rho = \rho^{\ell} \circ u$$

where $\rho \in SO(d)$ acts on \mathbb{R}^d (resp. \mathbb{S}^d) by rotation. The action on \mathbb{S}^d is rotation is about a fixed axis.

Foundational works in equivariant setting:

- Shatah (1988): finite time blow-up (self-similar) for wave maps $u: \mathbb{R}^{1+d} \to \mathbb{S}^d$ for $d \geq 3$.
- Shatah, Tahvildar-Zadeh (1992, 1994)

Small vs. Large Data: energy critical wave maps

- Small Data Theory—non-equivariant: If data (u_0, u_1) are small, then dynamics are simple, all solutions exists globally and become asymptotically free—referred to as scattering.
 - Tao ('01): for data small in critical Sobolev norm, $\dot{H}^1 \times L^2$, d=2, maps to \mathbb{S}^2 .
 - Krieger ('04): small energy data: maps to \mathbb{H}^2
 - Tataru ('05): small energy data: large class of targets *M*. Continuous dependence, persistence of regularity.
- Large data theory—non-equivariant Dynamical structure here is rich, as finite time breakdown (blow-up) may occur. Geometry of target plays a decisive role.
 - Negatively Curved Targets, e.g. ℍ²: Correspond roughly to defocusing type equation. Global existence and scattering for all smooth energy data established in a remarkable series of papers, Krieger-Schlag ('09), Sterbenz-Tataru ('09), Tao (09).
 - Sterbenz-Tataru ('09): blow-up can occur only if target manifold admits nontrivial harmonic map. This type of result was previously seen by Struwe ('03) in equivariant setting.

2d equivariant wave maps to the 2-sphere

Large data theory in case target does admit a nontrivial finite energy harmonic map:

- Sterbenz-Tataru ('09) proved threshold conjecture, i.e., g.e. and scattering for smooth data with energy below energy of harmonic map—non-equivariant.
- Many questions remain. Can one classify possible dynamics above threshold? Start with simpler equivariant model.

Model to be discussed today:

• 2*d* energy critical, equivariant wave maps:

$$u: \mathbb{R}^{1+2} \to \mathbb{S}^2$$

• equivariant reduction given by the ansatz

$$u(t, r, \omega) = (\psi(t, r), \ell\omega)$$

$$\mapsto (\sin \psi(t, r) \cos(\ell\omega), \sin \psi(t, r) \sin(\ell\omega), \cos \psi(t, r))$$

where (r,ω) are polar coordinates on \mathbb{R}^2 and $\ell \in \mathbb{N}^*$ is the equivariance class.

2d energy critical equivariant wave maps

Energy Critical Cauchy Problem: In the 1-equivariant setting the Cauchy problem reduces to

$$\psi_{tt} - \psi_{rr} - \frac{1}{r}\psi_r + \frac{\sin(2\psi)}{2r^2} = 0$$

$$(\psi, \psi_t)|_{t=0} = (\psi_0, \psi_1)$$
(1)

Conserved Energy:

$$\mathcal{E}(\vec{\psi})(t) = \int_0^\infty \left(\psi_t^2 + \psi_r^2 + \frac{\sin^2(\psi)}{r^2} \right) r \, dr = \text{const.}$$
 (2)

 $\Longrightarrow \psi(t,0) = m\pi, \ \psi(t,\infty) = n\pi \text{ for some } m,n \in \mathbb{N}.$

Disjoint energy classes-topological degree:

$$\mathcal{H}_{m,n} := \{ (\psi_0, \psi_1) \mid \mathcal{E}(\psi_0, \psi_1) < \infty \text{ and } \psi_0(0) = m\pi, \psi_0(\infty) = n\pi \}.$$

Scaling Invariance: (1) and (2) are invariant under the scaling

$$(\psi(t,r),\dot{\psi}(t,r))\mapsto (\psi(\lambda t,\lambda r)\lambda\dot{\psi}(\lambda t,\lambda r))$$

Equivariant wave maps to positively curved targets

In the case of positively curved targets, such as the sphere, 1-equivariant wave maps can blow-up in finite time.

- Struwe ('03): If finite time time blow-up occurs then ⇒ bubbling off of finite energy harmonic sphere.
- Côte ('05): asymptotic instability of harmonic map.
- Krieger, Schlag, Tataru ('08), Raphael, Rodnianski ('09): Constructions of explicit blow-up solutions.
- Rodnianski, Sterbenz: Constructions for equivariance classes $\ell \geq 4$.

Role of the harmonic map

The role of the harmonic map is crucial in blow-up scenarios. Harmonic Map: $Q(r) = 2 \arctan(r)$, (stereographic projection).

- Equivariance and energy criticality imply blow up can only happen at the origin in an energy concentration scenario.
- Struwe ('03) showed that if blow up occurs at say t=1, then, \exists a seq. of times $t_n \to 1$ and \exists a seq. of scales $\lambda_n \ll 1 t_n$ so that the rescaled sequence of wave maps:

$$\vec{\psi}_{n}(t,r) = \left(\psi\left(t_{n}, \lambda_{n}r\right), \lambda_{n}\dot{\psi}\left(t_{n}, \lambda_{n}r\right)\right)$$

converges locally to $(Q(r/\lambda_0),0)$ in the space-time norm $H^1_{\mathrm{loc}}((-1,1)\times\mathbb{R}^2;\mathbb{S}^2)$.

Topological degree and energy thresholds

Topological Degree: Finite energy $\Rightarrow \psi(t,0) = m\pi, \ \psi(t,\infty) = n\pi$ fixed for all t.

• Enough to look at , say $\psi(t,0)=0,\,\psi(t,\infty)=n\pi.$ Here we refer to n as the degree and we define

$$\mathcal{H}_n = \{(\psi_0, \psi_1) \mid \psi_0(0) = 0, \ \psi_0(\infty) = n\pi\}$$

- Note that (Q,0) is degree 1 since $Q(0)=0, Q(\infty)=\pi$.
- Degree 0: CKM ('08): It is impossible for degree 0 data $\vec{\psi}(0) \in \mathcal{H}_0$ with $\mathcal{E}(\vec{\psi}) < 2\mathcal{E}(Q)$ to produce a bubble since such maps stay bounded away from south pole.

$$|\psi(r)| \le F(\mathcal{E}(\vec{\psi})) < \pi \quad \forall \vec{\psi} \in \mathcal{H}_0 \quad \text{with} \quad \mathcal{E}(\vec{\psi}) < 2\mathcal{E}(Q)$$

• Degree 1: (Q,0) has minimal energy in \mathcal{H}_1 with $\mathcal{E}(Q,0)=4$. K-S-T ('08) produce finite time blow up for solutions in \mathcal{H}_1 with energy $\mathcal{E}(Q)+\delta$ for arbitrarily small $\delta>0$.

Prior degree 0 results

First consider degree 0 maps, $\psi(t) \in \mathcal{H}_0$, i.e., $\psi(t,0) = \psi(t,\infty) = 0$.

- From Struwe ('03), one can deduce global existence for wave maps $\psi(t) \in \mathcal{H}_0$ with energy $\mathcal{E}(\vec{\psi}) < 2\mathcal{E}(Q)$.
- Côte, Kenig, Merle ('08) showed that degree 0 wave maps with energy slightly above the energy of Q, i.e., $\psi(t) \in \mathcal{H}_0$, $\mathcal{E}(\vec{\psi}) < \mathcal{E}(Q) + \delta$, scatter to a linear wave as $t \to \pm \infty$ for some small $\delta > 0$. They conjecture that scattering should hold for all degree 0 maps with energy $< 2\mathcal{E}(Q)$.
- One can actually deduce this conjecture from Sterbenz-Tataru ('09) by considering their results in the equivariant setting.
 Here we give another proof based on small data/concentration compactness/rigidity method of Kenig, Merle ('06), ('08).

Degree 0: GE and Scattering below sharp threshold

Theorem 1 (Sterbenz-Tataru ('09), Côte, Kenig, L., Schlag, ('12))

Let $\mathcal{E}(\vec{\psi}) < 2\mathcal{E}(Q,0)$, $\vec{\psi}(0) \in \mathcal{H}_0$. Then the solution exists globally, and scatters (energy on compact sets vanishes as $t \to \infty$). In other words, one has

$$\vec{\psi}(t) = \vec{\varphi}(t) + o_{\mathcal{H}}(1)$$
 as $t \to \infty$

where $\vec{arphi} \in \mathcal{H}$ solves the linearized equation

$$\varphi_{tt} - \varphi_{rr} - \frac{1}{r}\varphi_r + \frac{1}{r^2}\varphi = 0$$

Moreover, this result is sharp in \mathcal{H}_0 in the following sense: For all $\delta > 0$ there exists data $\vec{\psi}(0) \in \mathcal{H}_0$ with $\mathcal{E}(\vec{\psi}) \leq 2\mathcal{E}(Q) + \delta$, such that $\vec{\psi}$ blows up in finite time.

Degree 1: Classification?

 Krieger, Schlag Tataru ('08): the blow up solutions exhibit a decomposition of the form

$$\psi(t,r) = Q(r/\lambda(t)) + \epsilon(t,r)$$

where the concentration rate satisfies $\lambda(t)=(1-t)^{1+\nu}$ for $\nu>\frac{1}{2}$, and $\epsilon(t)\in\mathcal{H}_0$ is small and regular.

- Here we consider the converse problem. Namely, if blow-up does occur for a solution $\vec{\psi}(t) \in \mathcal{H}_1$, in which energy regime, and in what sense does such a decomposition always hold?
- Given degree 0 result it is natural to suspect universality of the above blow-up profile in energy regime $[\mathcal{E}(Q), 3\mathcal{E}(Q))$ since Struwe's bubbling off theorem suggests that the difference $\vec{\psi}(t,r) (Q(r/\lambda(t)), 0) \in \mathcal{H}_0$ has energy $\approx \mathcal{E}(\vec{\psi}) \mathcal{E}(Q)$ which is $< 2\mathcal{E}(Q)$ if $\mathcal{E}(\vec{\psi}) < 3\mathcal{E}(Q)$.

Degree 1: Finite time blow-up

Theorem 2 (Côte, Kenig, L., Schlag, ('12))

Let $ec{\psi}(t) \in \mathcal{H}_1$ be a smooth solution blowing up at time t=1 with

$$\mathcal{E}(\vec{\psi}) < 3\mathcal{E}(Q).$$

Then, there exists a continuous function, $\lambda:[0,1)\to(0,\infty)$ with $\lambda(t)=o(1-t)$, a map $\vec{\varphi}=(\varphi_0,\varphi_1)\in\mathcal{H}_0$ with $\mathcal{E}(\vec{\varphi})=\mathcal{E}(\vec{\psi})-\mathcal{E}(Q)$, and a decomposition

$$\vec{\psi}(t) = \vec{\varphi} + (Q(\cdot/\lambda(t)), 0) + \vec{\epsilon}(t)$$

such that $\vec{\epsilon}(t) \in \mathcal{H}_0$ and $\vec{\epsilon}(t) \to 0$ in \mathcal{H}_0 as $t \to 1$.

Remarks

 The techniques used to prove Theorem 2 were inspired by the recent works of Duyckaerts, Kenig, Merle who established analogous classification results for

$$\Box u = u^5$$

in
$$\dot{H}^1 \times L^2(\mathbb{R}^3)$$
 with $W(x) = (1 + |x|^2/3)^{-\frac{1}{2}}$ instead of Q .

- We use certain parts of their ideology, which is very heavily based on concentration compactness arguments. Note that here we cannot rely in any form on induction on energy.
- We also establish a similar classification for degree 1 global-in-time solutions. Note that here the topology prevents scattering to 0, but rather solutions can asymptotically decouple into a rescaled harmonic map plus pure radiation.

Degree 1: Global solutions

Theorem 3 (Côte, Kenig, L., Schlag, ('12))

Let $\vec{\psi}(t) \in \mathcal{H}_1$ be a smooth solution that exists globally in time with

$$\mathcal{E}(\vec{\psi}) < 3\mathcal{E}(Q).$$

Then, there exists a continuous function, $\lambda:[0,\infty)\to(0,\infty)$ with $\lambda(t)=o(t)$, a solution to the linearized equation $\vec{\varphi}_L(t)\in\mathcal{H}_0$, and a decomposition

$$ec{\psi}(t) = ec{arphi}_L(t) + \left(Q\left(\cdot/\lambda(t)\right),0\right) + ec{\epsilon}(t)$$

such that $\vec{\epsilon}(t) \in \mathcal{H}_0$ and $\vec{\epsilon}(t) \to 0$ in \mathcal{H}_0 as $t \to \infty$.

Remarks

The requirement $\lambda(t) = o(t)$ as $t \to \infty$: many possibilities for the asymptotic behavior of global deg. 1 solutions w. energy $< 3\mathcal{E}(Q)$.

- scattering to Q_{λ_0} : If $\lambda(t) \to \lambda_0 \in (0, \infty)$ then our theorem says that the solution $\psi(t)$ asymptotically decouples into a soliton, Q_{λ_0} , plus a purely dispersive term.
- infinite time blow-up: If $\lambda(t) \to 0$ as $t \to \infty$ then the solution is concentrating $\mathcal{E}(Q)$ worth of energy at the origin as $t \to \infty$.
- infinite time flattening: If $\lambda(t) \to \infty$ as $t \to \infty$ then the solution concentrates $\mathcal{E}(Q)$ worth of energy at spacial infinity as $t \to \infty$.
- Global solutions of the type mentioned above, i.e., infinite time blow-up and flattening, have been constructed in the case of the 3d semi-linear focusing energy critical wave equation $\Box u = u^5$ by Donninger, Krieger ('11). No constructions of this type are known at this point for energy critical wave maps.

Further Remarks

- Theorem 2 and 3 together give a classification of all possible dynamics for deg. 1 maps in the energy regime $[\mathcal{E}(Q), 3\mathcal{E}(Q))$.
- Of course, our results do not give information about the precise rates $\lambda(t)$.
- We also say nothing about what happens at thresholds or above, i.e., $\mathcal{E} \geq 2\mathcal{E}(Q)$ in deg. 0 case and $\mathcal{E} \geq 3\mathcal{E}(Q)$ for the deg. 1 classification results.
- It is possible that at these higher energies one has more complicated dynamics such as multiple bubbles forming. As of yet no such multi-bump solutions have been constructed. Similarly, no multi-bump solutions have been constructed for $\Box u = u^5$.

Proof of Degree 0 Theorem: Induction on Energy

Kenig-Merle method: We outline the proof of Theorem 1. Let

$$S = \{(\psi_0, \psi_1) \in \mathcal{H}_0 \mid \vec{\psi}(t) \text{ exists globally and scatters as } t \to \pm \infty\}$$

We claim that $\mathcal{E}(\vec{\psi}) < 2\mathcal{E}(Q) \Rightarrow \vec{\psi} \in \mathcal{S}$.

- (Small data result): Small data global existence and scattering, proving S is not empty.
- (Concentration Compactness): If theorem fails, then \exists nonzero energy solution $\vec{\psi}_*$ of minimal energy $\mathcal{E}^* < 2\mathcal{E}(Q)$ which does not scatter (called the critical element). $\exists A_0 > 0$, and a continuous function $\lambda: I_{\mathsf{max}} \to [A_0, \infty)$ s.t. the set

$$K := \left\{ \left(\psi_* \left(t, r/\lambda(t) \right), \, \lambda^{-1}(t) \dot{\psi}_* \left(t, r/\lambda(t) \right) \right) \, \middle| \, t \in I_{\mathsf{max}} \right\}$$

is pre-compact in \mathcal{H}_0 . (Bahouri-Gerard Concentration Compactness decomposition ('99).)

• (Rigidity Argument): If a global evolution $\vec{\psi}$ has the property that the trajectory, K, is pre-compact in \mathcal{H}_0 , then $\psi \equiv 0$.

Comments on Degree 0 maps

Passage to 4*d* semi-linear formulation: Strong repulsive potential term hidden in the nonlinearity:

$$\frac{\sin(2\psi)}{2r^2} = \frac{\psi}{r^2} + \frac{\sin(2\psi) - 2\psi}{2r^2} = \frac{\psi}{r^2} + \frac{O(\psi^3)}{r^2}$$

- Indicates that the linearized operator has more dispersion than the 2d wave. In fact, same dispersion as 4d wave.
- Setting $\psi = ru$ we are led to this equation for u:

$$u_{tt} - u_{rr} - \frac{3}{r}u_r + \frac{\sin(2ru) - 2ru}{2r^3} = 0$$

• The nonlinearity above has the form $N(u,r) = u^3 Z(ru)$, Z smooth, bounded, even. The linear part is the radial d'Alembertian in \mathbb{R}^{1+4} and linearization is free radial wave equation in \mathbb{R}^{1+4} :

$$v_{tt}-v_{rr}-\frac{3}{r}v_r=0.$$

4d reduction for degree zero wave map

Observe that for $\psi \in \mathcal{H}_0$ we have that

$$\mathcal{E}(\vec{\psi}) \leq \|\vec{\psi}\|_{H \times L^2}^2 := \int_0^\infty \left(\psi_t^2 + \psi_r^2 + \frac{\psi^2}{r^2} \right) r dr = \int_0^\infty (u_t^2 + u_r^2) \, r^3 dr.$$

• If we assume that $\mathcal{E}(\vec{\psi}(0)) < 2\mathcal{E}(Q)$ then, we also have the opposite inequality

$$\|\vec{\mathit{u}}(0)\|_{\dot{H}^1\times L^2}^2\lesssim \mathcal{E}(\vec{\psi}(0)).$$

- 2d, degree 0 wave map problem equivalent to 4d cubic semi-linear. Moreover, a sequence of 2d degree 0 maps with energy bounded below $2\mathcal{E}(Q)$ correspond to a uniformly bounded sequence in $\dot{H}^1 \times L^2(\mathbb{R}^4)$.
- This correspondence below 2E(Q) means we can use technology for 4d equations, in particular Bahouri-Gérard concentration concentration compactness procedure, and new exterior enegy estimates for free radial wave of Côte, Kenig, Schlag.

Bahouri-Gérard Decomposition

Bahouri-Gerard Decomposition

 $\{\vec{\psi}_n\} \subset \mathcal{H}_0$ seq. bounded $< 2\mathcal{E}(Q)$. Then, up to extracting a subsequence, \exists a seq. of linear waves $\vec{\varphi}_L^j \in \mathcal{H}_0$, a seq. of times $\{t_n^j\}$, a seq. of scales $\{\lambda_n^j\} \subset (0,\infty)$, s.t. for $\vec{\gamma}_n^k$ defined by

$$\vec{\psi}_n(r) = \sum_{j=1}^k \left(\varphi_L^j(-t_n^j/\lambda_n^j, r/\lambda_n^j), \frac{1}{\lambda_n^j} \dot{\varphi}_L^j(-t_n^j/\lambda_n^j, r/\lambda_n^j) \right) + \vec{\gamma}_n^k(r)$$

we have, for any $j \leq k$, that

$$(\gamma_n^k(\lambda_n^j t_n^j, \lambda_n^j \cdot), \lambda_n^j \gamma_n^k(\lambda_n^j t_n^j, \lambda_n^j \cdot)) \rightharpoonup 0 \quad \text{weakly in} \quad H \times L^2.$$

In addition, for any $j \neq k$ we have

$$\frac{\lambda_n^j}{\lambda_n^k} + \frac{\lambda_n^k}{\lambda_n^j} + \frac{\left|t_n^j - t_n^k\right|}{\lambda_n^j} + \frac{\left|t_n^j - t_n^k\right|}{\lambda_n^k} \to \infty \quad as \quad n \to \infty.$$

Bahouri-Gérard Decomposition Cont.

Bahouri-Gerard Decomposition cont.

Moreover, the errors $\vec{\gamma}_n^k$ vanish asymptotically in the sense that if we let $\gamma_{n,L}^k(t) \in \mathcal{H}_0$ denote the linear evolution of the data $\vec{\gamma}_n^k \in \mathcal{H}_0$, we have

$$\limsup_{n\to\infty} \left\| \frac{1}{r} \gamma_{n,L}^{k} \right\|_{L_{t}^{\infty} L_{x}^{4} \cap L_{t}^{3} L_{x}^{6}(\mathbb{R} \times \mathbb{R}^{4})} \to 0 \quad as \quad k \to \infty.$$

Finally, we have the almost-orthogonality of the $H \times L^2$ norms :

$$\|\vec{\psi}_n\|_{H\times L^2}^2 = \sum_{1\leq j\leq k} \|\vec{\varphi}_L^j(-t_n^j/\lambda_n^j)\|_{H\times L^2}^2 + \|\vec{\gamma}_n^k\|_{H\times L^2}^2 + o_n(1)$$

and the almost-orthogonality of the nonlinear energy:

$$\mathcal{E}(\vec{\psi}_n) = \sum_{i=1}^k \mathcal{E}(\vec{arphi}_L^j(-t_n^j/\lambda_n^j)) + \mathcal{E}(\vec{\gamma}_n^k) + o_n(1)$$

Concentration Compactness (continued)

Figure : a schematic description of the concentration-compactness decomposition

Classification: how to work with degree 1 maps

- Degree 0 wave maps with energy below $2\mathcal{E}(Q)$ are analytically tractable objects given correspondence with 4d semi-linear equation.
- Nontrivial geometry of degree 1 wave maps is an obstacle to such simplifications.
- We rely explicitly on classical results on equivariant wave maps from the 90's and early 00's to bridge divide between degree 0 maps, on which can use concentration compactness techniques, and degree 1 maps, which we wish to classify.
- I will outline our procedure for proving Theorem 2 our classification of finite time blow-up. The general outline for proving Theorem 3 is similar in spirit.

Classical results

Shatah, Tahvildar-Zadeh ('92), Exterior energy decay:

$$\forall 0 \leq \lambda < 1 \quad \mathcal{E}_{\lambda(1-t)}^{1-t}(\vec{\psi}(t)) \to 0 \quad \text{as} \quad t \to 1$$

 Shatah, Tahvildar-Zadeh ('92), vanishing of averaged kinetic energy:

$$\frac{1}{1-t}\int_t^1\int_0^{1-s}\dot{\psi}^2(s,r)\,r\,dr\,ds\to 0\quad \text{as}\quad t\to 1$$

• Struwe's bubbling off theorem ('03): If $\mathcal{E}(\vec{\psi}) < 3\mathcal{E}(Q)$ then Struwes theorem implies that \exists a seq. of times $\{t_n\}$, a sequence of scales λ_n with $\lambda_n \ll 1 - t_n$ so that

$$\psi(t_n + \lambda_n t, \lambda_n r) - Q(r) \rightarrow 0$$
 in $L^2((-1, 1); H_{loc})$

Extraction of the large profile, Q_{λ_n}

• Using the classical results, we can (passing to a subsequence and rescaling) find $\alpha_n \to \infty$ so that

$$\|\psi(t_n) - Q(\cdot/\lambda_n)\|_{H(r \le \alpha_n \lambda_n)}^2 \to 0 \quad \text{as} \quad n \to \infty$$

$$\int_0^{1-t_n} \dot{\psi}^2(t_n, r) \, r \, dr \to 0 \quad \text{as} \quad n \to \infty$$

• Then, for any $0 < r_n < \alpha_n \lambda_n$ we have

$$\psi(t_n, r_n) \to \pi \quad \text{as} \quad n \to \infty$$

$$\mathcal{E}_{r_n}^{\infty}(\vec{\psi}(t_n) - (Q(\cdot/\lambda_n), 0)) \le C \le 2\mathcal{E}(Q)$$

Extraction of the radiation term

- Outside the light cone, a blow-up solution remains smooth up to t=1. We seek to isolate the singular part of the wave map by extracting the regular part of the solution outside of the light cone.
- This is accomplished by taking a limit after chopping off nontrivial topology of $\psi(t_n)$ at points $r_n < 1 t_n$. Idea is to construct degree 0 maps $\varphi_n \in \mathcal{H}_0$ that agree with $\vec{\psi}(t_n) (\pi, 0)$ on the interval $[r_n, \infty)$.

$$\vec{\varphi}_n \to \vec{\varphi}$$
 in $H \times L^2$

deg. 1 becomes deg. 0

Figure : The solid line represents the graph of the function $\varphi_n + \pi$ for fixed n, described in previous slide. The dotted line is the piece of the function $\psi(t_n, \cdot)$ that is chopped at $r = r_n$ in order to linearly connect to π , which ensures that $\vec{\varphi}_n \in \mathcal{H}_0$.

Singular part $\vec{\psi}(t) - \vec{\varphi}(t)$ and the error, $\vec{\epsilon}_n$

- Now consider the backwards wave map evolution $\vec{\varphi}(t) \in \mathcal{H}_0$ of the limit $\vec{\varphi}_n$. This is degree 0, and satisfies $\mathcal{E}(\vec{\varphi}) < 2\mathcal{E}(Q)$ so the evolution is global, smooth, and scatters.
- By the finite speed of propagation $\psi(t,r) \varphi(t,r) = \pi$ for $r \in [1-t,\infty)$ and $t \in [0,1)$.
- Now that we have identified the blow-up profile Q_{λ_n} along a time sequence and the radiation term, $\varphi(t)$ we can examine what is left

$$\vec{\epsilon}_n = (\epsilon_n^0, \epsilon_n^1) := \vec{\psi}(t_n) - \vec{\varphi}(t_n) - (Q(\cdot/\lambda_n), 0)$$

• First note: $\vec{\epsilon}_n \in \mathcal{H}_0$. Can also show that $\mathcal{E}(\vec{\epsilon}_n) \leq C \leq 2\mathcal{E}(Q)$ and

$$\|\epsilon_n^1\|_{L^2} \to 0$$
 as $n \to \infty$

Compactness of the error $\vec{\epsilon}_n$

 To finish the proof (along a sequence of times), we need to show that

$$\|\epsilon_n\|_H^2 := \int_0^\infty \left(\partial_r \epsilon_n^2(r) + \frac{\epsilon_n^2}{r^2}\right) r dr \to 0 \quad \text{as} \quad n \to \infty$$

- The proof is motivated by work of Duyckaerts, Kenig, Merle for $\Box u = u^5$ in \mathbb{R}^{1+3} . Delicate technical argument involving several steps. Concentration compactness techniques, our deg. 0 theory, and exterior energy estimates for 4d free waves of Côte, Kenig, Schlag ('12), are crucial.
- First define wave map evolutions $\vec{\epsilon}_n(t)$ of the data $\vec{\epsilon}_n \in \mathcal{H}_0$. Global and time and scatter since they are deg. 0 and have energy $< 2\mathcal{E}(Q)$.

Compactness of the error $\vec{\epsilon}_n$

Step 1 Show that the sequence $\vec{\epsilon}_n$, which is bounded in $H \times L^2$, contains no nonzero profiles.

- If it did, these profiles would necessarily be $= Q_{\lambda_0}$ due to vanishing of ϵ_n^1 in L^2
- This gives compactness in Strichartz norm $\|\frac{1}{r}\epsilon_n\|_{L^3_tL^6_x(\mathbb{R}^4)} \to 0$, but not in energy.
- Important implication: \exists linear waves $\vec{\epsilon}_{n,L}(t)$ with data having 0 initial velocities, $\vec{\epsilon}_{n,L}(0) = (\epsilon_{n,L}^0, 0)$ so that

$$\sup_{t \in \mathbb{R}} \|\vec{\epsilon}_n(t) - \vec{\epsilon}_{n,L}(t)\|_{(H \times L^2)} \to 0 \quad \text{as} \quad n \to \infty$$

This allows us to use linear theory.

Exterior energy for 4d linear wave equation

In companion paper, Côte, Kenig, Schlag ('12) prove the following estimates for free radial wave in \mathbb{R}^{1+4} :

Theorem

Consider solution v(t) to $\Box v = 0$, $\vec{v}(0) = (f, 0)$ in \mathbb{R}^{1+4} . Then, $\exists c > 0$ so that

$$||v(t)||_{\dot{H}^1 \times L^2(r \geq t)} \geq c||f||_{\dot{H}^1}$$

- The above estimates hold for data (f,0) in dimensions d=0 mod 4 but fail in dimensions $d=2 \mod 4$.
- The corresponding estimate for data (0, g) hold for d = 2 mod 4 but fail for $d = 0 \mod 4$.

Use linear theory in compactness argument

Step 2 Use linear theory in a contradiction argument:

• If $\|\epsilon_n\|_H$ does not tend to zero, then up to a subsequence we have

$$\|\epsilon_n\|_H \ge \alpha_0$$

 Using the fact that the sequence of nonlinear evolutions contain no profiles together with 4d correspondence and linear theory we have lower bound for exterior energy of nonlinear evolution:

$$\|\vec{\epsilon}(t)\|_{H\times L^2(r\geq t)}\geq c\alpha_0$$

• Using concentration compactness techniques, one can show that evolutions of $\vec{\psi}(t_n)$ and the error $\vec{\epsilon}_n$ remain close on an interval and with the above estimates, this leads to a concentration of energy away from the origin at a time < 1 which is a contradiction.

The End

Thank you!

p.s. a version of the slides from this talk will be availably shortly on my webpage:

math.uchicago.edu/~alawrie