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Wave Maps
A brief introduction to wave maps:

Definition: Formally, wave maps are critical points of the
Lagrangian

L(u, ∂u) =

∫
R1+d

ηαβ 〈∂αu, ∂βu〉g dt dx

where u : (R1+d , η)→ (M, g). Here, η is the Minkowski
metric on R1+d and (M, g) is a Riemannian manifold.

Intrinsic Formulation: Critical points of L satisfy the
Euler-Lagrange equation

ηαβDα∂βu = 0

Extrinsic Formulation: If M ↪→ RN is embedded, critical
points are characterized by

�u ⊥ TuM
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The Cauchy problem

Cauchy problem:

Intrinsic Formulation: In local coordinates on (M, g), the
Cauchy problem for wave maps is

�uk = −ηαβΓk
ij(u)∂αu

i∂βu
j

(u, ∂tu)|t=0 = (u0, u1)

where Γk
ij are the Christoffel symbols on TM.

Extrinsic Formulation: In the embedded case, the Cauchy
problem becomes

�u = ηαβS(u)(∂αu, ∂βu)

(u, ∂tu)|t=0 = (u0, u1)

where S is the second fundamental form of the embedding.
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Energy conservation and scaling

Conservation of energy: Wave maps exhibit a conserved
energy

E (u, ∂tu)(t) =

∫
Rd

(|∂tu|2g + |∇u|2g ) dx = const.

Scaling invariance: Wave maps are invariant under the scaling
u(t, x) 7→ u(λt, λx). The conserved energy is invariant under

the scaling u(t, x) 7→ λ
d−2
2 u(λt, λx).

Criticality: The scaling invariance implies that the Cauchy
problem is Ḣs × Ḣs−1 critical for s = d

2 , energy critical when
d = 2 and energy supercritical for d > 2.
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Equivariant Wave Maps

Equivariant wave maps: In the presence of symmetries, e.g.,
M = Sd , one can require

u ◦ ρ = ρ` ◦ u

where ρ ∈ SO(d) acts on Rd (resp. Sd) by rotation. The action
on Sd is rotation is about a fixed axis.
Foundational works in equivariant setting:

Shatah (1988): finite time blow-up (self-similar) for wave
maps u : R1+d → Sd for d ≥ 3.

Shatah, Tahvildar-Zadeh (1992, 1994)
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Small vs. Large Data: energy critical wave maps

Small Data Theory–non-equivariant: If data (u0, u1) are small,
then dynamics are simple, all solutions exists globally and
become asymptotically free–referred to as scattering.

Tao (’01): for data small in critical Sobolev norm, Ḣ1 × L2,
d = 2, maps to S2.
Krieger (’04): small energy data: maps to H2

Tataru (’05): small energy data: large class of targets M.
Continuous dependence, persistence of regularity.

Large data theory–non-equivariant Dynamical structure here is
rich, as finite time breakdown (blow-up) may occur. Geometry
of target plays a decisive role.

Negatively Curved Targets, e.g. H2: Correspond roughly to
defocusing type equation. Global existence and scattering for
all smooth energy data established in a remarkable series of
papers, Krieger-Schlag (’09), Sterbenz-Tataru (’09), Tao (09).
Sterbenz-Tataru (’09): blow-up can occur only if target
manifold admits nontrivial harmonic map. This type of result
was previously seen by Struwe (’03) in equivariant setting.
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2d equivariant wave maps to the 2-sphere
Large data theory in case target does admit a nontrivial finite
energy harmonic map:

Sterbenz-Tataru (’09) proved threshold conjecture, i.e., g.e.
and scattering for smooth data with energy below energy of
harmonic map–non-equivariant.

Many questions remain. Can one classify possible dynamics
above threshold? Start with simpler equivariant model.

Model to be discussed today:

2d energy critical, equivariant wave maps:

u : R1+2 → S2

equivariant reduction given by the ansatz

u(t, r , ω) = (ψ(t, r), `ω)

7→ (sinψ(t, r) cos(`ω), sinψ(t, r) sin(`ω), cosψ(t, r))

where (r , ω) are polar coordinates on R2 and ` ∈ N∗ is the
equivariance class.
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2d energy critical equivariant wave maps
Energy Critical Cauchy Problem: In the 1-equivariant setting the
Cauchy problem reduces to

ψtt − ψrr −
1

r
ψr +

sin(2ψ)

2r2
= 0 (1)

(ψ,ψt)|t=0 = (ψ0, ψ1)

Conserved Energy:

E(~ψ)(t) =

∫ ∞
0

(
ψ2
t + ψ2

r +
sin2(ψ)

r2

)
r dr = const. (2)

=⇒ ψ(t, 0) = mπ , ψ(t,∞) = nπ for some m, n ∈ N.
Disjoint energy classes–topological degree:

Hm,n := {(ψ0, ψ1) | E(ψ0, ψ1) <∞ and ψ0(0) = mπ, ψ0(∞) = nπ}.

Scaling Invariance: (1) and (2) are invariant under the scaling

(ψ(t, r), ψ̇(t, r)) 7→ (ψ(λt, λr)λψ̇(λt, λr))
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Equivariant wave maps to positively curved targets

In the case of positively curved targets, such as the sphere,
1-equivariant wave maps can blow-up in finite time.

Struwe (’03): If finite time time blow-up occurs then ⇒
bubbling off of finite energy harmonic sphere.

Côte (’05): asymptotic instability of harmonic map.

Krieger, Schlag, Tataru (’08), Raphael, Rodnianski (’09):
Constructions of explicit blow-up solutions.

Rodnianski, Sterbenz: Constructions for equivariance classes
` ≥ 4.

A. Lawrie joint work with R. Côte, C. Kenig, and W. Schlag, http://www.math.uchicago.edu/~alawrieLarge energy solutions of the equivariant wave map problem

http://www.math.uchicago.edu/~alawrie


Role of the harmonic map

The role of the harmonic map is crucial in blow-up scenarios.
Harmonic Map: Q(r) = 2 arctan(r), (stereographic projection).

Equivariance and energy criticality imply blow up can only
happen at the origin in an energy concentration scenario.

Struwe (’03) showed that if blow up occurs at say t = 1, then,
∃ a seq. of times tn → 1 and ∃ a seq. of scales λn � 1− tn
so that the rescaled sequence of wave maps:

~ψn(t, r) =
(
ψ (tn, λnr) , λnψ̇ (tn, λnr)

)
converges locally to (Q(r/λ0), 0) in the space-time norm
H1
loc((−1, 1)× R2;S2).
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Topological degree and energy thresholds
Topological Degree: Finite energy ⇒ ψ(t, 0) = mπ, ψ(t,∞) = nπ
fixed for all t.

Enough to look at , say ψ(t, 0) = 0, ψ(t,∞) = nπ. Here we
refer to n as the degree and we define

Hn = {(ψ0, ψ1) | ψ0(0) = 0, ψ0(∞) = nπ}

Note that (Q, 0) is degree 1 since Q(0) = 0,Q(∞) = π.

Degree 0: CKM (’08): It is impossible for degree 0 data
~ψ(0) ∈ H0 with E(~ψ) < 2E(Q) to produce a bubble since
such maps stay bounded away from south pole.

|ψ(r)| ≤ F (E(~ψ)) < π ∀~ψ ∈ H0 with E(~ψ) < 2E(Q)

Degree 1: (Q, 0) has minimal energy in H1 with E(Q, 0) = 4.
K-S-T (’08) produce finite time blow up for solutions in H1

with energy E(Q) + δ for arbitrarily small δ > 0.
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Prior degree 0 results

First consider degree 0 maps, ψ(t) ∈ H0, i.e.,
ψ(t, 0) = ψ(t,∞) = 0.

From Struwe (’03), one can deduce global existence for wave
maps ψ(t) ∈ H0 with energy E(~ψ) < 2E(Q).

Côte, Kenig, Merle (’08) showed that degree 0 wave maps
with energy slightly above the energy of Q, i.e., ψ(t) ∈ H0,
E(~ψ) < E(Q) + δ, scatter to a linear wave as t → ±∞ for
some small δ > 0. They conjecture that scattering should
hold for all degree 0 maps with energy < 2E(Q).

One can actually deduce this conjecture from Sterbenz-Tataru
(’09) by considering their results in the equivariant setting.
Here we give another proof based on small data/concentration
compactness/rigidity method of Kenig, Merle (’06), (’08).
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Degree 0: GE and Scattering below sharp threshold

Theorem 1 (Sterbenz-Tataru (’09), Côte, Kenig, L., Schlag, (’12))

Let E(~ψ) < 2E(Q, 0), ~ψ(0) ∈ H0. Then the solution exists
globally, and scatters (energy on compact sets vanishes as
t →∞). In other words, one has

~ψ(t) = ~ϕ(t) + oH(1) as t →∞

where ~ϕ ∈ H solves the linearized equation

ϕtt − ϕrr −
1

r
ϕr +

1

r2
ϕ = 0

Moreover, this result is sharp in H0 in the following sense: For all
δ > 0 there exists data ~ψ(0) ∈ H0 with E(~ψ) ≤ 2E(Q) + δ, such
that ~ψ blows up in finite time.
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Degree 1: Classification?

Krieger, Schlag Tataru (’08): the blow up solutions exhibit a
decomposition of the form

ψ(t, r) = Q(r/λ(t)) + ε(t, r)

where the concentration rate satisfies λ(t) = (1− t)1+ν for
ν > 1

2 , and ε(t) ∈ H0 is small and regular.

Here we consider the converse problem. Namely, if blow-up
does occur for a solution ~ψ(t) ∈ H1, in which energy regime,
and in what sense does such a decomposition always hold?

Given degree 0 result it is natural to suspect universality of
the above blow-up profile in energy regime [E(Q), 3E(Q))
since Struwe’s bubbling off theorem suggests that the
difference ~ψ(t, r)− (Q(r/λ(t)), 0) ∈ H0 has energy
≈ E(~ψ)− E(Q) which is < 2E(Q) if E(~ψ) < 3E(Q).
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Degree 1: Finite time blow-up

Theorem 2 (Côte, Kenig, L., Schlag, (’12))

Let ~ψ(t) ∈ H1 be a smooth solution blowing up at time t = 1 with

E(~ψ) < 3E(Q).

Then, there exists a continuous function, λ : [0, 1)→ (0,∞) with
λ(t) = o(1− t), a map ~ϕ = (ϕ0, ϕ1) ∈ H0 with
E(~ϕ) = E(~ψ)− E(Q), and a decomposition

~ψ(t) = ~ϕ + (Q (·/λ(t)) , 0) + ~ε(t)

such that ~ε(t) ∈ H0 and ~ε(t)→ 0 in H0 as t → 1.
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Remarks

The techniques used to prove Theorem 2 were inspired by the
recent works of Duyckaerts, Kenig, Merle who established
analogous classification results for

�u = u5

in Ḣ1 × L2(R3) with W (x) = (1 + |x |2/3)−
1
2 instead of Q.

We use certain parts of their ideology, which is very heavily
based on concentration compactness arguments. Note that
here we cannot rely in any form on induction on energy.

We also establish a similar classification for degree 1
global-in-time solutions. Note that here the topology prevents
scattering to 0, but rather solutions can asymptotically
decouple into a rescaled harmonic map plus pure radiation.
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Degree 1: Global solutions

Theorem 3 (Côte, Kenig, L., Schlag, (’12))

Let ~ψ(t) ∈ H1 be a smooth solution that exists globally in time
with

E(~ψ) < 3E(Q).

Then, there exists a continuous function, λ : [0,∞)→ (0,∞) with
λ(t) = o(t), a solution to the linearized equation ~ϕL(t) ∈ H0, and
a decomposition

~ψ(t) = ~ϕL(t) + (Q (·/λ(t)) , 0) + ~ε(t)

such that ~ε(t) ∈ H0 and ~ε(t)→ 0 in H0 as t →∞.
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Remarks
The requirement λ(t) = o(t) as t →∞: many possibilities for the
asymptotic behavior of global deg. 1 solutions w. energy < 3E(Q).

scattering to Qλ0 : If λ(t)→ λ0 ∈ (0,∞) then our theorem
says that the solution ψ(t) asymptotically decouples into a
soliton, Qλ0 , plus a purely dispersive term.

infinite time blow-up: If λ(t)→ 0 as t →∞ then the solution
is concentrating E(Q) worth of energy at the origin as t →∞.

infinite time flattening: If λ(t)→∞ as t →∞ then the
solution concentrates E(Q) worth of energy at spacial infinity
as t →∞.

Global solutions of the type mentioned above, i.e., infinite
time blow-up and flattening, have been constructed in the
case of the 3d semi-linear focusing energy critical wave
equation �u = u5 by Donninger, Krieger (’11). No
constructions of this type are known at this point for energy
critical wave maps.
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Further Remarks

Theorem 2 and 3 together give a classification of all possible
dynamics for deg. 1 maps in the energy regime [E(Q), 3E(Q)).

Of course, our results do not give information about the
precise rates λ(t).

We also say nothing about what happens at thresholds or
above, i.e., E ≥ 2E(Q) in deg. 0 case and E ≥ 3E(Q) for the
deg. 1 classification results.

It is possible that at these higher energies one has more
complicated dynamics such as multiple bubbles forming. As of
yet no such multi-bump solutions have been constructed.
Similarly, no multi-bump solutions have been constructed for
�u = u5.
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Proof of Degree 0 Theorem: Induction on Energy
Kenig-Merle method: We outline the proof of Theorem 1. Let

S = {(ψ0, ψ1) ∈ H0 | ~ψ(t) exists globally and scatters as t → ±∞}

We claim that E(~ψ) < 2E(Q)⇒ ~ψ ∈ S.

(Small data result): Small data global existence and
scattering, proving S is not empty.

(Concentration Compactness): If theorem fails, then ∃
nonzero energy solution ~ψ∗ of minimal energy E∗ < 2E(Q)
which does not scatter (called the critical element). ∃A0 > 0,
and a continuous function λ : Imax → [A0,∞) s.t. the set

K :=
{(

ψ∗ (t, r/λ(t)) , λ−1(t)ψ̇∗ (t, r/λ(t))
) ∣∣∣ t ∈ Imax

}
is pre-compact in H0. (Bahouri-Gerard Concentration
Compactness decomposition (’99).)

(Rigidity Argument): If a global evolution ~ψ has the property
that the trajectory, K , is pre-compact in H0, then ψ ≡ 0.
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Comments on Degree 0 maps
Passage to 4d semi-linear formulation: Strong repulsive potential
term hidden in the nonlinearity:

sin(2ψ)

2r2
=
ψ

r2
+

sin(2ψ)− 2ψ

2r2
=
ψ

r2
+

O(ψ3)

r2

Indicates that the linearized operator has more dispersion than
the 2d wave. In fact, same dispersion as 4d wave.

Setting ψ = ru we are led to this equation for u:

utt − urr −
3

r
ur +

sin(2ru)− 2ru

2r3
= 0

The nonlinearity above has the form N(u, r) = u3Z (ru), Z
smooth, bounded, even. The linear part is the radial
d’Alembertian in R1+4 and linearization is free radial wave
equation in R1+4:

vtt − vrr −
3

r
vr = 0.
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4d reduction for degree zero wave map
Observe that for ~ψ ∈ H0 we have that

E(~ψ) ≤ ‖~ψ‖2H×L2 :=

∫ ∞
0

(
ψ2
t + ψ2

r +
ψ2

r2

)
rdr =

∫ ∞
0

(u2t + u2r ) r3dr .

If we assume that E(~ψ(0)) < 2E(Q) then, we also have the
opposite inequality

‖~u(0)‖2
Ḣ1×L2 . E(~ψ(0)).

2d , degree 0 wave map problem equivalent to 4d cubic
semi-linear. Moreover, a sequence of 2d degree 0 maps with
energy bounded below 2E(Q) correspond to a uniformly
bounded sequence in Ḣ1 × L2(R4).

This correspondence below 2E(Q) means we can use
technology for 4d equations, in particular Bahouri-Gérard
concentration concentration compactness procedure, and new
exterior enegy estimates for free radial wave of Côte, Kenig,
Schlag.
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Bahouri-Gérard Decomposition
Bahouri-Gerard Decomposition

{~ψn} ⊂ H0 seq. bounded < 2E(Q). Then, up to extracting a
subsequence, ∃ a seq. of linear waves ~ϕj

L ∈ H0, a seq. of times

{t jn}, a seq. of scales {λjn} ⊂ (0,∞), s.t. for ~γkn defined by

~ψn(r) =
k∑

j=1

(
ϕj
L(−t jn/λjn, r/λjn),

1

λjn
ϕ̇j
L(−t jn/λjn, r/λjn)

)
+ ~γkn (r)

we have, for any j ≤ k , that

(γkn (λjnt
j
n, λ

j
n·), λjnγkn (λjnt

j
n, λ

j
n·)) ⇀ 0 weakly in H × L2.

In addition, for any j 6= k we have

λjn
λkn

+
λkn

λjn
+

∣∣∣t jn − tkn

∣∣∣
λjn

+

∣∣∣t jn − tkn

∣∣∣
λkn

→∞ as n→∞.
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Bahouri-Gérard Decomposition Cont.
Bahouri-Gerard Decomposition cont.

Moreover, the errors ~γkn vanish asymptotically in the sense that if
we let γkn,L(t) ∈ H0 denote the linear evolution of the data

~γkn ∈ H0, we have

lim sup
n→∞

∥∥∥∥1

r
γkn,L

∥∥∥∥
L∞t L4x∩L3tL6x (R×R4)

→ 0 as k →∞.

Finally, we have the almost-orthogonality of the H × L2 norms :

‖~ψn‖2H×L2 =
∑

1≤j≤k
‖~ϕj

L(−t jn/λjn)‖2H×L2 + ‖~γkn‖2H×L2 + on(1)

and the almost-orthogonality of the nonlinear energy:

E(~ψn) =
k∑

j=1

E(~ϕj
L(−t jn/λjn)) + E(~γkn ) + on(1)
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Concentration Compactness (continued)

t=0

t=t

t=t
n2

n1

Figure : a schematic description of the concentration-compactness
decomposition
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Classification: how to work with degree 1 maps

Degree 0 wave maps with energy below 2E(Q) are analytically
tractable objects given correspondence with 4d semi-linear
equation.

Nontrivial geometry of degree 1 wave maps is an obstacle to
such simplifications.

We rely explicitly on classical results on equivariant wave
maps from the 90’s and early 00’s to bridge divide between
degree 0 maps, on which can use concentration compactness
techniques, and degree 1 maps, which we wish to classify.

I will outline our procedure for proving Theorem 2 – our
classification of finite time blow-up. The general outline for
proving Theorem 3 is similar in spirit.
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Classical results

Shatah,Tahvildar-Zadeh (’92), Exterior energy decay:

∀0 ≤ λ < 1 E1−tλ(1−t)(
~ψ(t))→ 0 as t → 1

Shatah,Tahvildar-Zadeh (’92), vanishing of averaged kinetic
energy:

1

1− t

∫ 1

t

∫ 1−s

0
ψ̇2(s, r) r dr ds → 0 as t → 1

Struwe’s bubbling off theorem (’03): If E(~ψ) < 3E(Q) then
Struwes theorem implies that ∃ a seq. of times {tn}, a
sequence of scales λn with λn � 1− tn so that

ψ(tn + λnt, λnr)− Q(r)→ 0 in L2((−1, 1);Hloc)
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Extraction of the large profile, Qλn

Using the classical results, we can (passing to a subsequence
and rescaling) find αn →∞ so that

‖ψ(tn)− Q(·/λn)‖2H(r≤αnλn)
→ 0 as n→∞∫ 1−tn

0
ψ̇2(tn, r) r dr → 0 as n→∞

Then, for any 0 < rn < αnλn we have

ψ(tn, rn)→ π as n→∞

E∞rn (~ψ(tn)− (Q(·/λn), 0)) ≤ C ≤ 2E(Q)
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Extraction of the radiation term

Outside the light cone, a blow-up solution remains smooth up
to t = 1. We seek to isolate the singular part of the wave
map by extracting the regular part of the solution outside of
the light cone.

This is accomplished by taking a limit after chopping off
nontrivial topology of ψ(tn) at points rn < 1− tn. Idea is to
construct degree 0 maps ϕn ∈ H0 that agree with
~ψ(tn)− (π, 0) on the interval [rn,∞).

~ϕn → ~ϕ in H × L2
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deg. 1 becomes deg. 0

rn 1− tn r =∞

π

Figure : The solid line represents the graph of the function ϕn + π for
fixed n, described in previous slide. The dotted line is the piece of the
function ψ(tn, ·) that is chopped at r = rn in order to linearly connect to
π, which ensures that ~ϕn ∈ H0.
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Singular part ~ψ(t)− ~ϕ(t) and the error, ~εn

Now consider the backwards wave map evolution ~ϕ(t) ∈ H0

of the limit ~ϕn. This is degree 0, and satisfies E(~ϕ) < 2E(Q)
so the evolution is global, smooth, and scatters.

By the finite speed of propagation ψ(t, r)− ϕ(t, r) = π for
r ∈ [1− t,∞) and t ∈ [0, 1).

Now that we have identified the blow-up profile Qλn along a
time sequence and the radiation term, ϕ(t) we can examine
what is left

~εn = (ε0n, ε
1
n) := ~ψ(tn)− ~ϕ(tn)− (Q(·/λn), 0)

First note: ~εn ∈ H0. Can also show that E(~εn) ≤ C ≤ 2E(Q)
and

‖ε1n‖L2 → 0 as n→∞
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Compactness of the error ~εn

To finish the proof (along a sequence of times), we need to
show that

‖εn‖2H :=

∫ ∞
0

(
∂r ε

2
n(r) +

ε2n
r2

)
r dr → 0 as n→∞

The proof is motivated by work of Duyckaerts, Kenig, Merle
for �u = u5 in R1+3. Delicate technical argument involving
several steps. Concentration compactness techniques, our
deg. 0 theory, and exterior energy estimates for 4d free waves
of Côte, Kenig, Schlag (’12), are crucial.

First define wave map evolutions ~εn(t) of the data ~εn ∈ H0.
Global and time and scatter since they are deg. 0 and have
energy < 2E(Q).
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Compactness of the error ~εn

Step 1 Show that the sequence ~εn, which is bounded in H × L2,
contains no nonzero profiles.

If it did, these profiles would necessarily be = Qλ0 due to
vanishing of ε1n in L2

This gives compactness in Strichartz norm ‖1r εn‖L3tL6x (R4) → 0,
but not in energy.

Important implication: ∃ linear waves ~εn,L(t) with data having
0 initial velocities, ~εn,L(0) = (ε0n,L, 0) so that

sup
t∈R
‖~εn(t)− ~εn,L(t)‖(H×L2) → 0 as n→∞

This allows us to use linear theory.
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Exterior energy for 4d linear wave equation

In companion paper, Côte, Kenig, Schlag (’12) prove the following
estimates for free radial wave in R1+4:

Theorem

Consider solution v(t) to �v = 0, ~v(0) = (f , 0) in R1+4. Then,
∃c > 0 so that

‖v(t)‖Ḣ1×L2(r≥t) ≥ c‖f ‖Ḣ1

The above estimates hold for data (f , 0) in dimensions d = 0
mod 4 but fail in dimensions d = 2 mod 4.

The corresponding estimate for data (0, g) hold for d = 2
mod 4 but fail for d = 0 mod 4.
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Use linear theory in compactness argument
Step 2 Use linear theory in a contradiction argument:

If ‖εn‖H does not tend to zero, then up to a subsequence we
have

‖εn‖H ≥ α0

Using the fact that the sequence of nonlinear evolutions
contain no profiles together with 4d correspondence and linear
theory we have lower bound for exterior energy of nonlinear
evolution:

‖~ε(t)‖H×L2(r≥t) ≥ cα0

Using concentration compactness techniques, one can show
that evolutions of ~ψ(tn) and the error ~εn remain close on an
interval and with the above estimates, this leads to a
concentration of energy away from the origin at a time < 1
which is a contradiction.
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The End

Thank you!
p.s. a version of the slides from this talk will be availably shortly
on my webpage:
math.uchicago.edu/∼alawrie

A. Lawrie joint work with R. Côte, C. Kenig, and W. Schlag, http://www.math.uchicago.edu/~alawrieLarge energy solutions of the equivariant wave map problem

http://www.math.uchicago.edu/~alawrie

